Приветствую Вас, Гость Воскресенье, 27.07.2025, 11:41
RSS

Меню сайта

Мини-чат

Наш опрос
Оцените мой сайт
Всего ответов: 12

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Форма входа

Поиск

Календарь
«  Июнь 2013  »
Пн Вт Ср Чт Пт Сб Вс
     12
3456789
10111213141516
17181920212223
24252627282930

Архив записей

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  •   
    Главная » 2013 » Июнь » 21 » Как репетитор по математике
    18:33
     

    Как репетитор по математике

    Как репетитор по математике работает с методом подстановки в системах уравнений (7 класс)

    Изучение математики в 7 классе принципиально отличается от всего того, что предлагалось ранее в 5 — 6 классах. И дело не только в названиях тем и разделении предмета на алгебру и геометрию. Помимо введения новых понятий и правил меняется характер работы с числами и выражениями. Многое из того, что репетитор по математике показывает в 7 классе является обобщением ранее пройденного, но поднимающее использование математики на принципиально новый уровень. Такое продвижение предполагает прочное усвоение вычислительной базы, которое к 7 классу должно быть достигнуто. Должно, но не обязано.

    Значительные пробелы отстающих школьников, обращающихся к репетитору по математике в тот или иной период учебы в школе, ставят неразрешимые проблемы перед использованием традиционных методик объяснений, а именно методик прямого изложения материала. Креативный репетитор по математике находится в постоянном поиске новых форм и способов подачи объяснений конкретному ученику. И это очень непросто сделать.

    Как репетитор по математике работает с трудными темами?

    Трудность каждой конкретной темы — весьма относительное понятие. Все зависит от того, с какой стороны к ней подойти и насколько ученик способен воспринимать ту или иную форму объяснений репетитора. Многие сложные понятия упрощаются, если репетитору по математике удается подобрать какое-нибудь простое и лаконичное описание математического процесса, сравнить его с чем-то обыденным и понятным, связать новое с ранее изученным. Это непростая задача, но репетитору нужно стремиться к ее выполнению. В алгебре, при объяснении нового материала, бывает достаточно точно подобрать соответствующие примеры работы правила на числах. У многих учеников 7 класса все еще преобладает тип мышления «от общего к частному», поэтому, стремление репетитора по математике к абсолютной стрости и полноте объяснений (доказательств), к использованию общих форм, рассмотрению всех случаев или педантичной проверке равносильности в переходах может перечеркнуть все усилия по обеспечению понимания.

    Важно добиться первоначального понимания, пусть ученику не открывается вся картина происходящего в алгоритме, а лишь приоткрывается некая завеса нового. В некоторых случаях уже одно такое продвижение можно ставить в заслугу репетитору по математике, ибо ребенок начинает хоть что-то решать самостоятельно. Это крайне важно, ибо результаты практической работы помогает осмыслить многие моменты, которые оказались непонятыми.

    Иногда репетиторы по математике, особенно начинающие, путают два состояния ученика: не понял и не запомнил. Если ребенок говорит «я не понимаю», — это не всегда означает, что слова репетитора по математике остались не осмысленными. Часто бывает наоборот: заявляет, что все понятно, но на проверку оказывается, что он просто заучил те или иные ходы в решении. Репетитору важно уметь отличать эти два состояния и правильно их использовать.

    Как правило, решение систем методом подстановки вызывает у детей 7 класса дикое отвращение и неприязнь. Почему? Процесс, который описывает репетитор по математике на первом уроке по данной теме, очень трудно увязывается с привычным занятием в алгебре 7 класса. Дети настолько привыкают к однострочным одношаговым решениям (какими являются преобразования многочленов). Поэтому, когда репетитор по математике исписывает равносильными системами целую страницу в тетради, ученик почти всегда заявляет: «я не понимаю». «Стоп! Давай разберемся», — говорю я ему. Что именно из этого ты не понял, а что просто не успел запомнить? Если репетитор по математике поставит вопрос именно таким ребром, он переводит деятельность ученика из созерцательной в оценочную. Нужно дать время на то, чтобы привыкнуть к записям и запомнить ходы. Это облегчит оценку того, что именно не понятно. Главное не торопить ученика и дать ему возможность высказаться. Пусть это будут невнятные фразы, лишенные логики. Мастерство репетитора заключается в том, чтобы выявить проблему даже по «обрывкам мыслей» ученика.

    Конечно, я описываю ситуацию, в которой репетитор не провел с учеником соответствующую подготовительную работу. А она обязательно нужна.

    Подготовительная работа репетитора

    Нужны задания на проверку конкретных пар чисел для конкретной системы. В процессе выполнения простейших заданий репетитор обкатывает новую терминологию: пара чисел, удовлетворяющая системе, решение системы, проверка пары. Я еще употребляю фразы «вставка чисел», «вставка пары»
    Важно убедить ученика в том, что совсем не обязательно искать пару чисел, которая при вставке в начальную систему даст два верных равенства. Мы же ищем саму пару.

    Самому слабому ученику достаточно сказать, что при замене одной системы на другую не меняется самое главное — ее ответ, поэтому не важно, какую именно систему решать. Пара, подходящая для одной из них — подойдет и для другой. Это можно просто проверить на конкретных числах. Надо чувствовать ученика и не ввязываться в объяснения равносильности переходов в 7 классе, какими бы точными они не были. Если все-таки репетитор по математике хочет донести до сознания ученика логику алгоритма, это нужно делать после того, как ученик его запомнит.

    Если ученик более-менее толковый, репетитор по математике применяет числовую методику проверки равносильности. Покажу ее работу на примере

    Пусть задана система линейных уравнений:
    Система линейных уравнений 7 класс. Задание репетитора

    Как ее решить — все вы отлично знаете. Но как объяснить это решение слабому учащемуся? Вот она — головная боль для преподавателя. Дети в 7 классе не воспринимают общие математические методы доказательства равносильности, под лупой которых, конечно же, вся логика преобразований оказывается на поверхности.

    Какие методики могут быть задействованы в принципе? Обычно репетитор по математике проводит равносильные преобразования по классической схеме:
    Как репетитор по математике проводит равносильные преобразования

    Однако нельзя оставлять такую форму без каких-либо объяснений.

    Что чаще всего не понятно ученику?

    Как правило к моменту изучения темы «метод подстановки», учащиеся 7 класса уже имеют выражать переменную y через переменную x. Будем считать, что репетитор по математике решил эту проблему в теме «графический способ решения систем уравнений». Тогда самый непонятный ход — вставка выражения 3-x во второе уравнение системы на место x.

    Как репетитор может объяснить замену игрека на 3-x ?
    Я покажу как можно работать со средним учеником по методике числовой проверки ( если ученик сильный — для него вполне подойдут строгие математические обоснования «в обе стороны»). Итак, рассмотрим равносильный переход между системами:
    Равносильный переход между системам уравнений

    Надо убедить ученика в том, что одна и та же пара чисел (она предоставляется в готовом виде) превращает каждое равенство в верное. Репетитор говорит: «Давай проверим пару (2;1), то есть х=2; y=1. Вставим их на места букв в систему (1).Получим:Проверка репетитором чисел 2 и 1 Эти равенства верные, поэтому пара чисел (2;1) — решение системы (1). Но 1=3-2 и поэтому можно вместо единицы в нижнем уравнении написать в скобках (3-2). От этого при подсчете не изменится результат». Далее репетитор по математике меняет 1 на разность 3 — 2
    Репетитор по математике меняет 1 на разность 3 - 2 и спрашивает ученика: "Какая запись получится, если мы задумаем эту же пару (2;1) вставить во вторую систему? Будут ли ее равенства верными? Конечно, ведь мы только что их проверили (в этот момент репетитор по математике показывает на записанную систему №3). Вставка пары (2;1) приводит нас к повторению той же самой записи, к копии уже проверенного равенства. Поэтому пара (2;1) будет еще и решением системы №2. Значит у них одинаковые ответы (понимаю, что вывод не выдерживает никакой критики с точки зрения строгой математики и проверка проведена в одну сторону, но дети проглотят такой маневр репетитора). Поэтому вместо того, чтобы решать первую систему, мы можем решать вторую и через нее искать эту пару (если она неизвестна).

    Остальные равносильные преобразования репетитору по математике не составит труда объяснить. В них нет ничего нового. Обычное решение уравнения с одной переменной. Понятно, что икс должен быть корнем уравнения (2). Ученики в 7 классе обычно понимают, что его надо найти.

    Замечу, что ответ нужно записывать не в виде x=2; y=1, а в виде пары (2;1). Это будет способствовать скорейшему формированию у ученика представления об ответе, как о некоторой точке координатной плоскости.

    Репетитор по математике 7 класс — Колпаков А.Н. Москва, Строгино.

    Просмотров: 1127 | Добавил: ughisen | Рейтинг: 0.0/0
    Всего комментариев: 0
    Бесплатный конструктор сайтовuCoz
    Copyright MyCorp © 2025